Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            NLP research has increasingly focused on subjective tasks such as emotion analysis. However, existing emotion benchmarks suffer from two major shortcomings: (1) they largely rely on keyword-based emotion recognition, overlooking crucial cultural dimensions required for deeper emotion understanding, and (2) many are created by translating English-annotated data into other languages, leading to potentially unreliable evaluation. To address these issues, we introduce Cultural Lenses on Emotion (CuLEmo), the first benchmark designed to evaluate culture-aware emotion prediction across six languages: Amharic, Arabic, English, German, Hindi, and Spanish. CuLEmo comprises 400 crafted questions per language, each requiring nuanced cultural reasoning and understanding. We use this benchmark to evaluate several state-of-the-art LLMs on culture-aware emotion prediction and sentiment analysis tasks. Our findings reveal that (1) emotion conceptualizations vary significantly across languages and cultures, (2) LLMs performance likewise varies by language and cultural context, and (3) prompting in English with explicit country context often outperforms in-language prompts for culture-aware emotion and sentiment understanding. The dataset and evaluation code are publicly available.more » « lessFree, publicly-accessible full text available July 27, 2026
- 
            Free, publicly-accessible full text available June 2, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            In the wake of the terrorist attacks of 11 September 2001, extensive research efforts have been dedicated to the development of computational algorithms for identifying contamination sources in water distribution systems (WDSs). Previous studies have extensively relied on evolutionary optimization techniques, which require the simulation of numerous contamination scenarios in order to solve the inverse-modeling contamination source identification (CSI) problem. This study presents a novel framework for CSI in WDSs using Bayesian optimization (BO) techniques. By constructing an explicit acquisition function to balance exploration with exploitation, BO requires only a few evaluations of the objective function to converge to near-optimal solutions, enabling CSI in real-time. The presented framework couples BO with EPANET to reveal the most likely contaminant injection/intrusion scenarios by minimizing the error between simulated and measured concentrations at a given number of water quality monitoring locations. The framework was tested on two benchmark WDSs under different contamination injection scenarios, and the algorithm successfully revealed the characteristics of the contamination source(s), i.e., the location, pattern, and concentration, for all scenarios. A sensitivity analysis was conducted to evaluate the performance of the framework using various BO techniques, including two different surrogate models, Gaussian Processes (GPs) and Random Forest (RF), and three different acquisition functions, namely expected improvement (EI), probability of improvement (PI), and upper confident bound (UCB). The results revealed that BO with the RF surrogate model and UCB acquisition function produced the most efficient and reliable CSI performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
